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Eulerian and Lagrangian descriptions of a flowing fluid.
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The Eulerian approach is the preferred method in fluid mechanics



Flow field characterization
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Flow field examples

1D upstream, 3D downstream




Steady vs. unsteady & laminar vs. turbulent flow
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Streamlines

Flow visualisation
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Example: 2-D flow field
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Streamlines, streaklines and pathlines

Streamline: Line that, at a given moment t, is everywhere tangential to the
velocity field. Strictly Eulerian concept.

Streakline: Line formed by all particles that, at a given moment t, have
previously passed through a common point. Most often used in a laboratory
setting to visualize flow by injecting buoyant smoke in air or dye in water.

Pathline: Trajectory followed by a single particle that flows from one point to
another. Strictly Lagrangian concept.

Note: In steady flow, all particles follow the same trajectory and thus each
streakline coincides with a streamline through the injection point. Similarly, each
pathline is de facto also a streakline since all subsequent particles will follow the
same path. In unsteady flow, on the other hand, particles injected at t=t, do not
necessarily follow the same trajectory as particles injected at t=t,. Hence pathlines,
streaklines and streamlines do not necessarily coincide.



Example

Q: Water particles flowing from a
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The acceleration field
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Control volume and system
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Reynolds Transport Theorem (RTT)
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Relation?

Reynolds Transport Theorem (RTT)
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Example

Q: Fluid flows from a fire extinguisher tank. The system
consists of all fluid in the tank, the control volume is
defined by the outer surface of the tank. Consider the
extensive property mass (B=m, b=1). How do the time
rate of B in the system relate to the time rate of B in the
control volume ?
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Derivation of the Reynolds Transport Theorem (RTT)
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But what happens in control volumes with complex
geometries or with multiple in- and outlets?
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Outflow across a typical portion of the control surface
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Inflow across atypical portion of the control surface
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Reynolds Transport Theorem for the general 3D case
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Reynolds Transport Theorem for the general 3D case

Control surface




